

Муниципальное автономное общеобразовательное учреждение «Средняя общеобразовательная школа № 35 с углубленным изучением отдельных предметов» (МАОУ «СОШ № 35»)

«Öткымын предмет пыдісянь велöдан 35 №-а шöр школа» муниципальнöй асъюралана велöдан учреждение («35 – а ШШ МАВУ»)

ПРИНЯТА
Педагогическим советом МАОУ
«СОШ №35»
Протокол
№1 от 31 августа 2020

УТВЕРЖДАЮ
Директор МАОУ «СОШ №35»
______ Павлова Е.А.
«31» августа 2020

Дополнительная общеобразовательная программа - Дополнительная общеразвивающая программа

«Робототехника»

Направленность – Научно-техническая

Возраст учащихся — 11-15 лет Срок реализации — 1 год

Составитель: педагог дополнительного образования, учитель технологии Базаров Виктор Валентинович

Сыктывкар 2020

1. КОМПЛЕКС ОСНОВНЫХ ХАРАКТЕРИСТИК ДОПОЛНИТЕЛЬНОЙ ОБЩЕОБРАЗОВАТЕЛЬНОЙ – ДОПОЛНИТЕЛЬНОЙ ОБЩЕРАЗВИВАЮЩЕЙ ПРОГРАММЫ

1.1. Пояснительная записка

Дополнительная общеобразовательная программа -дополнительная общеразвивающая программа (далее – программа) «Робототехника» имеет научно-техническую направленность, т.к. так как в наше время робототехники и компьютеризации, ребенка необходимо учить решать задачи с помощью автоматов, которые он сам может спроектировать, защищать свое решение и воплотить его в реальной модели, т.е. непосредственно сконструировать и запрограммировать.

Актуальность развития этой темы заключается В TOM, настоящий момент в России развиваются нанотехнологии, электроника, механика и программирование. Т.е. созревает благодатная почва для развития компьютерных технологий и робототехники. Успехи страны в XXIвеке будут определять природные ресурсы, не интеллектуального потенциала, который определяется уровнем самых передовых сегодняшний день технологий. Уникальность образовательной робототехники заключается в возможности объединить конструирование и программирование в одном курсе, что способствует интегрированию преподавания информатики, математики, черчения, естественных наук с развитием инженерного мышления, через техническое творчество. Техническое творчество — мощный инструмент синтеза знаний, закладывающий прочные основы системного мышления. Таким образом, инженерное творчество и лабораторные исследования многогранная деятельность, которая должна стать составной частью повседневной жизни каждого обучающегося.

ФГОС ООО требуют освоения конструкторской и проектноисследовательской деятельности, и комплекты по робототехнике полностью удовлетворяют эти требования.

Педагогическая целесообразность этой программы заключается в том что, она является целостной и непрерывной в течении всего процесса обучения, и позволяет школьнику шаг за шагом раскрывать в себе творческие возможности и само реализоваться в с современном мире. В процессе конструирования и программирования дети получат дополнительное образование в области физики, механики, электроники и информатики.

Очень важным представляется тренировка работы в коллективе и развитие самостоятельного технического творчества.

Цели обучения робототехники:

Повышение мотивации к изучению предметов естественноматематического цикла (физика, информатика, математика, технология), знакомство с основными принципами механики, с основами программирования, понимание важности межпредметных связей. Формирование целостного миропонимания и современного научного мировоззрения.

- Разностороннее и своевременное развитие детей, их творческих способностей.
- Формирование навыков самообразования, самореализации личности. Развитие умения творчески подходить к решению задачи, анализировать проблему и довести решение задачи до работающей модели, излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений, работать над проектом в команде, эффективно распределять обязанности.
- Воспитание чувства делового сотрудничества (доброжелательность друг к другу, уважать мнение других, уметь слушать товарищей), ответственного отношению к делу, самостоятельности, умения ориентироваться в постоянно изменяющихся условиях, быстро находить коллективное и самостоятельное решение возникающих проблем. Воспитание чувства товарищеской взаимовыручки и этики групповой работы, этики и культуры общения, основ бережного отношения к оборудованию. Задачи:

Обучающие:

- дать первоначальные знания о конструкции робототехнических устройств;
- научить и программирования робототехнических устройств;
- сформировать общенаучные и технологические навыки конструирования и проектирования;
- ознакомить с правилами безопасной работы с инструментами Воспитывающие:
- формировать творческое отношение к выполняемой работе;
- воспитывать умение работать в коллективе, эффективно распределять обязанности.

Развивающие:

- развивать творческую инициативу и самостоятельность;
- развивать психофизиологические качества учеников: память, внимание, способность

логически мыслить, анализировать, концентрировать внимание на главном.

- Развивать умения излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений.

Результаты обучения

Общеучебные умения, навыки и способы деятельности

Общеучебные умения, навыки и способы деятельности структурированы по ключевым задачам общего образования, отражающим

индивидуальные, общественные и государственные потребности.

Образовательные результаты сформулированы в деятельностной форме, это служит основой разработки контрольных измерительных материалов основного общего образования по информатике.

Личностные образовательные результаты:

- готовность к самоидентификации в окружающем мире на основе критического анализа информации, отражающей различные точки зрения на смысл и ценности жизни;
- умение создавать и поддерживать индивидуальную информационную среду, обеспечивать защиту значимой информации и личную информационную безопасность, развитие чувства личной ответственности за качество окружающей информационной среды;
- приобретение опыта использования информационных ресурсов общества и электронных средств связи в учебной и практической деятельности;
- умение осуществлять совместную информационную деятельность, в частности при выполнении учебных проектов;
- повышение своего образовательного уровня и уровня готовности к продолжению обучения с использованием ИКТ.

Метапредметные образовательные результаты:

- планирование деятельности: определение последовательности промежуточных целей с учётом конечного результата, составление плана и последовательности действий;
- прогнозирование результата деятельности и его характеристики;
- контроль в форме сличения результата действия с заданным эталоном;
- коррекция деятельности: внесение необходимых дополнений и корректив в план действий;
- умение выбирать источники информации, необходимые для решения задачи (средства массовой информации, электронные базы данных, информационно-телекоммуникационные системы, Интернет, словари, справочники, энциклопедии и др.);
- умение выбирать средства ИКТ для решения задач из разных сфер человеческой деятельности;

Предметные образовательные результаты:

- Способность и готовность применять необходимые для построения моделей знания
- принципов действия и математического описания составных частей мехатронных и
- робототехнических систем (информационных, электромеханических, электронных
- элементов и средств вычислительной техники);
- Способность реализовывать модели средствами вычислительной техники;
- Владение навыками разработки макетов информационных, механических,

- электронных и микропроцессорных модулей мехатронных и робототехнических систем;
- Владение основами разработки алгоритмов и составления программ управления
- роботом;
- Умение проводить настройку и отладку конструкции робота;
- Способность применять контрольно-измерительную аппаратуру для определения
- характеристик и параметров макетов;
- Владение основами разработки функциональных схем;
- Способность проводить кинематические, прочностные оценки механических узлов;
- Владение навыками проведения предварительных испытаний составных частей
- опытного образца мехатронной или робототехнической системы по заданным программам и методикам.
 - <u>2. Результаты обучения</u> (требования к уровню подготовки обучающихся)
 - В результате изучения робототехники учащиеся должны знать и уметь:
 - -Правила техники безопасности при работе с электрическими приборами
 - -Роль и место микроэлектроники в современном обществе
 - -Основные характеристики и принцип работы микроконтроллеров
 - -Методы проектирования, сборки, настройки устройств
 - -Основы программирования автоматизированных систем
 - -Основы языка программирования программы LegoMindstormsEducation EV-3 и Arduino IDE
 - -Самостоятельно разрабатывать проекты устройств на основе микроконтроллера LegoMindstormsEducation EV-3 и Ардуино.
 - -Вести исследовательские и научно-практические работы
 - -Самостоятельно программировать микроконтроллеры Учащиеся должны уметь:
 - -работать по предложенным инструкциям
 - -творчески подходить к решению задачи
 - -довести решение задачи до работающей модели
 - -излагать мысли в чёткой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путём логических рассуждений
 - -работать над проектом в команде, эффективно распределять обязанности Учащиеся должны использовать приобретённые знания и умения в практической деятельности:
 - -создавать реально действующие модели устройств при специальных элементов по разработанной схеме, по собственному замыслу компьютере для программы различных устройств; -создавать на корректировать при необходимости; демонстрировать программы технические возможности устройств.

Формы обучения

- 1. Лекции
- 2. Практические занятия
- 3. Творческие проекты

При организации практических занятий и творческих проектов формируются команды из 2-4 человек. Для каждой команды желательно иметь отдельное рабочее место, состоящее из компьютера и конструктора.

Под методом проектов понимают технологию организации образовательных

ситуаций, в которых учащихся ставит и решает собственные задачи, и технологию сопровождения самостоятельной деятельности учащегося.

Преобладающей формой текущего контроля выступает проверка работоспособности устройства. Формы подведения итогов

Диагностика уровня усвоения материала осуществляется:

- 1. по результатам электронного тестирования, завершающего изучение темы (группы тем)
 - 2. по результатам выполнения учащимися практических заданий на каждом уроке
 - 3. по результатам конкурсных работ

Основное содержание тем учебного курса

1. Вводное занятие

Этапы развития современной робототехники. «От легодента до конструктора», «Роботы вокруг нас» - видео презентации. Организация и содержание работы объединения. Правила действующие на занятиях Lego-конструирования. Требования педагога к учащимся на период обучения. Вводный инструктаж по соблюдению техники безопасности и пожарной безопасности при работе.

Робототехника. Законы робототехники. Передовые направления в робототехнике. Конструкторы компании Lego. Видео презентации: Международные соревнования роботов.

2. Основы построения конструкций.

Понятие конструкция и её элементы. Основные свойства конструкции: жёсткость, устойчивость, прочность, функциональность и законченность. Виды и способы крепежа деталей конструкций. Силы, действующие на сжатие и растяжение элементов конструкции. Отработка общих понятий «выше», «правее», «левее» и т.д. на конструкторах лего. Понятие конструирования (постановка задачи). Способы и принципы описания конструкции (рисунок, эскиз, чертёж) их достоинства и недостатки. Как работать с инструкцией. Выбор наиболее рационального способа описания. Условные обозначения деталей конструктора (символы, терминология).

Практическая работа. Изготовление простейших конструкций по схемам.

3. Передаточные механизмы.

Ременные передачи: характеристика, элементы, виды, назначение, практическое использование. Зубчатые передачи: характеристика, элементы, виды, назначение, практическое использование. Зубчатые передачи под углом 90, их виды. Понятие «редуктор». Технические характеристики повышающих и понижающих редукторов.

Последовательность описания построенной модели. Практическая работа. Создание ременных и зубчатых механизмов с использованием готовых схем. Построение подвижных моделей с использованием технологических карт. Проектирование, сборка подвижной модели с использованием понижающего (повышающего) редуктор. Анализ творческих работ.

4. Конструирование.

Ознакомление с конструктором серии Education: ПервоРобот EV-3. Правила работы с конструктором. Названия и назначения деталей их условные обозначения. Изучение типовых соединений деталей.

Микропроцессор EV-3: правила работы с ним, подготовка к работе, назначение разъёмов, подключение моторов и датчиков. Передаточный механизм: назначение, виды (ремённый, зубчатый, червячный), основные

элементы. Редуктор: виды (понижающий, повышающий), характеристика, применение. Понятие: «Передаточное отношение», «Мощность». Золотое правило механики. Использование зубчатой передачи для увеличения мощности робота. Применение нескольких видов передач движении в одной модели. Способы крепления редуктора к сервомотору: технические требования к монтируемым конструкциям.

5. Программно-управляемые модели.

Что такое робот. Робототехника. Законы робототехники. Передовые направления в робототехнике. Соревнования роботов: Евробот, фестиваль мобильных роботов, олимпиады роботов. Спортивная робототехника - бои роботов (неразрушающие). Программно-управляемые модели: конструкторы, «самодельные» роботы. Правила по сборке роботов. Понятие «Модернизация». Использование зубчатой передачи для увеличения мощности робота. Полноприводная программно-управляемая модель. Использование редуктора для создания скоростной модели автомобиля. Факторы, способствующие победе робота на соревнованиях по робототехнике.

6. Основные понятия микроэлектроники

Микроэлектроника и робототехника. Основные понятия. Знакомство с микроконтроллером Arduino. Теоретические основы электроники. Практикум (проекты).

Маячок

Светофор

7. Основные принципы программирования микроконтроллеров.

Программирование Arduino

Логические и переменные конструкции

Аналоговые цифровые входы и выходы. Принципы их использования.

Применение массивов.

Практикум (проекты).

Азбука Морзе Кнопочный переключатель Светильник с кнопочным управлением,

Кнопочные ковбои

Маячок с нарастающей яркостью

Модель пламени свечи Светильник с управляемой яркостью Счетчик нажатий секундомер

8. Датчики для микроконтроллера

Сенсоры. Датчики Arduino

Подключение различных датчиков к Arduino.

Практикум (проекты).

Светильник с управляемой яркостью

Метеостанция

Автоматическое освещение

Измерение влажности, температуры и давления воздуха Измерение сердцебиения Защитный код клавиатуры Индикация света.

9. Практическое применение микроконтроллеров

Сенсоры. Датчики Arduino

Подключение различных датчиков к Arduino.

Практикум (проекты).

Светильник с управляемой яркостью

Метеостанция

Автоматическое освещение

Измерение влажности, температуры и давления воздуха Измерение сердцебиения Защитный код клавиатуры Индикация света.

10. Электронный текстиль

Знакомство с платой Arduino Lilypad.

Проекты электронного текстиля Плата Arduino Lilypad и компоненты: светодиоды, акселерометр, датчик температуры, зуммер, переключатель, Xbee. Проекты «Сверкающий браслет», «светящаяся закладка»

11. Проектная работа

Работа над собственным творческим проектом автономного электронного устройства. Творческий проект сочетает в себе как электронную начинку и микроконтроллер,так и механику и корпус, изготовленные с помощью 3D принтера.

Учебно-тематический план

Тема курса	Количество часов	Практическая часть (часов)	Формы контроля
Вводное занятие	2		
Основы построения конструкций	12	12	Тест, результаты практикума
Передаточные механизмы	10	10	Тест, результаты практикума
Конструирование	16	16	Тест, результаты практикума
Программно-управляемые модели	34	34	Тест, результаты практикума
Основные понятия микроэлектроники	12	12	Тест, результаты практикума
Основные принципы программирования микроконтроллеров	28	28	Тест, результаты практикума
Датчики для микроконтроллера	20	20	Тест, результаты практикума
Практическое применение микроконтроллеров	48	48	Тест, результаты практикума

Электронный текстиль	16	16	Тест, результаты практикума
Проектная работа	16	16	Конференция
Всего	210	Практические работы - 208	

Средства обучения:

- 1. Ноутбук, или стационарный ПК.
- 2. Программное обеспечение Arduino IDE
- 3. Наборы по микроэлектронике Arduino «Матрешка Z»
- 4. Плата Arduino Lily Pad и дополнительные компоненты.
- 5. Наборы датчиков, сервоприводов, LCD экранов, и др.
- 6. локальная сеть;
- 7. сеть Интернет;
- 8. мультимедиа проектор;
- 9. принтер;
- 10. сканер.
- 11. операционная система Windows;
- 12. CD. Introduction to Robotics (обучающаяпрограмма)
- 13. СД. ПервоРобот LegoWeDo. Программное обеспечение.
- 14. CD. Introduction to Robotics for teacher. Методическиерекомендации.
- 15. LEGO MINDSTORMS Education EV-3. (среда программирования)
- 16. Конструктор: LegoEducation серии "Перворобот EV-3

Комплектация может дополняться в зависимости от уровня сложности индивидуальных и групповых проектов.

,

Календарно –тематический план

		Домаш. задание	Стандарт/содержание	Оснащение	Основные виды учебной деятельности учащихся		Дата
одное занятие				I			
Роботанизация работы кружка. Инструктаж по ТБ и ПБ. Робототехника. Конструкторы компании ЛЕГО.	2	презентация	Этапы развития современной робототехники. «От легодента до конструктора», «Роботы вокруг нас» - видео презентации. Организация и содержание работы объединения. Правила действующие на занятиях Legoконструирования. Требования педагога к учащимся на период обучения. Вводный инструктаж по соблюдению техники безопасности и пожарной безопасности при работе. Робототехника. Законы робототехники. Передовые направления в робототехнике. Конструкторы компании Lego. Видео презентации: Международные соревнования роботов.			Дискусс ия	

3-4	Конструкции: понятие,	2	Понятие конструкция и	Проекты:		
	элементы.		её элементы. Основные	Изготовление		
			свойства конструкции:	простейших		
			жёсткость, устойчивость,	конструкций		
			прочность,	по схемам.		
			функциональность и			
			законченность. Виды и			
			способы крепежа деталей			
5-8	Основные свойства	4	конструкций. Силы,	проекты		
	конструкции		действующие на сжатие и	Изготовление		
			растяжение элементов	простейших		
			конструкции. Отработка	конструкций		
			общих понятий «выше»,	по схемам.		
			«ниже», «правее», «левее»			
9-12	Готовые схемы-	4	и т.д. на конструкторах	проекты		
	шаблоны сборки		лего. Понятие	Изготовление		
	конструкций.		конструирования	простейших		
			(постановка задачи).	конструкций		
			Способы и принципы	по схемам.		
			описания конструкции			
			(рисунок, эскиз, чертёж) их			

13-14 Проверочная работа по 2	достоинства и недостатки.	<u>Проекты:</u>	
теме «Конструкции».	Как работать с инструкцией.	Изготовление	
	Выбор наиболее	простейших	
	рационального способа	конструкций	
	описания. Условные	по схемам.	
	обозначения деталей		
	конструктора (символы,		
	терминология).		
Передаточные механизмы			<u> </u>
предато пъте межанизмът			
15-16 Ременные передачи: 2	Ременные передачи:	Создание	
виды, применение.	характеристика, элементы,	ременных и	
	виды, назначение,	зубчатых	
	практическое использование.	механизмов с	
	Зубчатые передачи:	использованием	
	характеристика, элементы,	готовых схем.	
	J		

17-18 Зубчатые передачи, их виды. Применение зубчатых передач в технике.	2	виды, назначение, практическое использование. Зубчатые передачи под углом 90, их виды. Понятие «редуктор». Технические характеристики повышающих и Построение	
19-20 Реечные передачи. Передачи под прямым углом.	2	повышающих и Построение понижающих редукторов. подвижных Последовательность моделей с описания построенной использованием модели.	
21-22 Свободное занятие по теме «Ремённые и зубчатые передачи».	2	Проектирование, сборка подвижной модели с использованием понижающего (повышающего) редуктор.	
23-24 Самостоятельная творческая работа.	2	Анализ творческих работ.	

Конструирование						
 25-26 Конструктор Перворобот EV-3. Конструкция, органы управления и дисплей EV-3. Первое включение. 27-28 Сервомотор: устройство, технические характеристики, правила эксплуатации. 	2		з. Правила работы с конструктором. Названия и назначения деталей их условные обозначения. Изучение типовых соединений деталей.	Проект: Перворобот EV-3 Проект: Сервомотор		
правила эксплуатации.	2	Передаточный механизм: назначение, виды (ремённый, зубчатый, червячный), основные элементы. Редуктор: виды (понижающий, повышающий),	Проект:Зубчатый			
«передаточный механизм». Анализ схемы передачи движения в различных механизмах и устройствах.			характеристика, применение. Понятие: «Передаточное отношение», «Мощность». Золотое правило механики. Использование зубчатой передачи для увеличения мощности робота. Применение нескольких видов	редуктор		

I P I	Построение передаточных механизмов на основе различных видов ремённых передач. Ремённый редуктор.	2	передач движении в одной модели. Способы крепления редуктора к сервомотору: технические требования к монтируемым конструкциям.	Проект: Ременной редуктор	
I 1	Построение передаточных механизмов на основе различных видов зубчатых передач.	4		Проект: Мультипликатор	
] P I	Червячный редуктор. Конструирование, монтирование редуктора к сервомотору.	2		Проект: Червячный редуктор	
	Самостоятельная гворческая работа.	2		Проект: Коробка скоростей	
Прогр	аммно-управляемые м	одели			

41-42 Робот. Правила	,	Что такое робот.	Проект: Робот будущего. Какой
робототехники. Видео презентации		Робототехника. Законы	он?
программно-		робототехники. Передовые	
управляемых моделей.		направления в	
		робототехнике.	
		Соревнования роботов:	
43-44 Сборка робота	,	Евробот, фестиваль	Проект: Робот за
«Пятиминутка».		мобильных роботов,	пять минут.
		олимпиады роботов.	
45-46 Конструирование. 2	,	Спортивная робототехника -	Проект: Как видит
Сборка робота		бои роботов	робот.
«Линейный ползун» -		(неразрушающие).	
модернизация робота "Пятиминутка"		Программно-управляемые	
(установка датчиков		модели: конструкторы,	
EV-3).		«самодельные» роботы.	
		Правила по сборке роботов.	
		Понятие «Модернизация».	
47-50 Соревнование 4		Использование зубчатой	Проект: Робот для
47-50 Соревнование программно-		передачи для увеличения	слалома.
управляемых роботов:		мощности робота.	
«Слалом». Факторы,		Полноприводная	
способствующие победе.		программно-управляемая	
Пообдел		модель. Использование	
		редуктора для создания	
		скоростной модели	

51-52	Сборка робота «Трёхколёсный бот».	2	
53-54	Конструирование. Сборка робота «Бот- внедорожник» - модернизация робота «Трёхколёсный бот» (установка датчиков EV-3, понижающего редуктора).	2	
55-56	Сборка четырёхколёсного робота «Транспортное средство».	2	

автомобиля. Факторы, способствующие победе робота на соревнованиях по робототехнике.

Проект: «Трёхколёсный бот».		
Проект: «Бот- внедорожник» -		
Проект:		
«Транспортное средство».		

57-58	Конструирование. Сборка робота «Танк- Сумоист» - модернизация робота «Гусеничное транспортное средство» (установка датчиков EV-3, понижающего редуктора, храповика).	2	
59-62	Соревнование программно- управляемых двухмоторных роботов: «Сумо». Факторы, способствующие победе.	4	

Проект:	«Танк-		
Сумоист»			
Проект:			
двухмотор	ный		
«Сумоист»			

63-66	Соревнование программно- управляемых одномоторных роботов: «Сумо». Факторы, способствующие победе.	4	
67-68	Соревнование программно- управляемых роботов «Перетягивание каната». Факторы, способствующие победе.	2	
69-72	Соревнование программно- управляемых полноприводных моделей: «Спидвей». Факторы, способствующие победе.	2	

Проект:		
одномоторный		
«Сумоист».		
«Сумоист».		
Проект:		
«Перетягивание		
«перстягивание		
каната».		
Проект:		
полноприводных		
моделей		
«Спидвей».		
«Спид ьс и».		

73-74	Самостоятельная творческая работа по теме «Управляемые машины». Анализ творческих работ	2			Проект: «Управляемые машины».		
Осн	овные понятия микр	оэлек	строники.				
75	Микроэлектроника и робототехника. Основные понятия, сферы применения. Знакомство с микротроллером Arduino.	1	Презентация	Роль микроэлектроники на современном этапе развития общества. Основные понятия микроэлектроники. Структура и состав контроллера Arduino. Среда программирования. Техника безопасности	Рабочий лист Простейшая программа	описывает основные понятия, связанные с направлением микроэлектроники; приводит примеры применения микроэлектроники в современном обществе; объясняет необходимость	Дискусс ия

76-81	Теоретические основы	6	1 .	роект «Маячок», объясняет основные	Тест,
	электроники.		Законы электричества. Как быстро «С	Светофор» понятия электричества;	результ
			строить схемы: макетная плата.	проводит основные	аты
			Чтение электрических схем.	расчеты для построения	практик
			Управление светодиодом.	электрической схемы;	ума
			Мультиметр. Электронные	называет основные	
			измерения.	элементы на цифровых	
				схемах;	
				пользуется средой	
				программирования для	
				создания программы	
				работы	
				микроконтроллера;	
				объясняет разницу	
				между различными	
				источниками питания и	
				выбирает необходимые;	
				пользуется таблицей	
				маркировки резисторов	
				для определения	
				соответствующего	
				номинала;	
				выполняет сборку	
				электрических схем	
				вносит исправления в	
				электронные схемы,	
				собранные	
				неправильно;	
Эсно	RHME HNUHHUHLI HNO	грами	ирования микроконтроллеров		- '

Программирование Arduino	8		Морзе»	использует современные среды программирования микроконтроллеров; объясняет основную структуру программы и ее элементы; пользуется такими основными понятиями программирования как	тест результ ат практик ума
Логические переменные и конструкции		кнопки. Устранение шумов с помощью стягивающих и подтягивающих резисторов. Программное устранение дребезга. Булевые переменные и константы,	Проекты «Кнопочный переключатель», «светильник с кнопочным управлением», «Кнопочные ковбои»	переменные, выражения, логические конструкции, функции; умеет составить программу в соответствии с поставленной задачей и загрузить ее в микроконтроллер; анализирует представленную компьютерную программу и определяет, что соответствующая программа выполняет.	Тест, результ аты практик ума

o –	Τ		T	I		m	 1
97-	Аналоговые и	4	Аналоговые и цифровые сигналы,	•	объясняет разницу	Тест,	
100	цифровые входы и		1	Маячок с	между цифровым и	результ	
	выходы. Принципы их		T	нарастающей	аналоговым сигналом;	ат	
	использования		поддерживающих ШИМ.	яркостью»,	приводит примеры	практик	
			Циклические конструкции, датчик	«Модель	использования	ума	
			случайных чисел. Использование	пламени свечи»,	различных типов		
			датчика в программировании	«Светильник с	сигналов;		
			Arduino.	управляемой	осуществляет		
				яркостью»	подключение электронной		
				1	схемы в зависимости от		
					типа выбранного сигнала;		
101				_	проверяет тип сигнала,		
101-	Применение массивов	8		Проекты:	подаваемого на		
108			символов. Пьезоэффект.	счетчик нажатий,	устройство;		
			Управление звуком.	секундомер.	объясняет принцип		
					широтно-импульсной		
					модуляции;		
					описывает цветовые		
					модели и их роль в		
					создании цвета;		
					обосновывает выбор		
					-		
					соответствующего типа сигнала в своей схеме.		
					сигнала в своей схеме.		

Датчики для микроконтроллера

100	С П	4	n	h		T	
109-	Сенсоры. Датчики	4		Проекты:	объясняет понятие	Тест,	
112	Arduino.		<u> </u>		сенсора; различает типы	резульа	
			<u> </u>	управляемой	сенсоров;	тат	
				яркостью»,	приводит примеры	практик	
			сигналы на входе Arduino.	«Автоматическо	применения сенсоров;	ума	
			Использование монитора		, <i>осуществляет</i> настройки		
			последовательного порта для	«Измерение	датчиков;		
			наблюдений за параметрами	температуры»	снимает показания,		
			системы.		которые посылают		
					датчики;		
					описывает проблемы,		
	Подключение	8	, .	Проекты:	возможные при	Тест,	
120	различных датчиков к		Датчик дождя (влаги). Датчик	«Защитный код	использовании датчиков;	результ	
	Arduino		окиси углерода. Датчики	клавиатуры»,	пользуется различными	аты	
			температуры и влажности dht11 и	«индикация	типами датчиков для	практик	
			dht22. Датчик давления. Датчик	света»,	получения необходимой	ума	
			холла. Датчики пара, пламени,	измерение	информации;		
			освещенности, звука, влажности	сердцебиения	создает программный		
			почвы, наклона и	Температуры,	код для управления		
			др.	влажности и	датчиками; выбирает		
				давления	соответствующий датчик		
				воздуха.	для получения		
					необходимого сигнала.		
					псооходимого сигнала.		

Практическое применение микроконтроллеров

121- 126	Цифровые индикаторы. Применение массивов	6	принципы действия семисегментного индикатора. Управление. Массив данных. Электронные часы	Проект «Секундомер», «Счетчик нажатий», «Перетягивание каната».	пользуется такими основными понятиями программирования как массивы; объясняет явление пьезоэффекта; собирает электрическую схему для управления звуком; использует кодовую	Тест, результ аты практик ума
127- 130	Работа со звуком	4	Подключение пьезоизлучателя (Buzzer), изучение команды tone(). Воспроизведение простых мелодий, например, на основе примеров toneMelody. Управление звуками аналоговым входом tonePitchFollower. Пианино (несколько обычных кнопок, при нажатии - одной - своя нота)	«Терменвокс. Осциллограф (звуковой генератор); проигрыватель мелодии, измеритель уровня громкости.	таблицу для программирования слов; собирает электрическую схему с использованием потенциометра; снимает электрические показатели в схемах с пьезоэлементом и потенциометром; описывает электрические процессы, происходящие в построенных схемах; обосновывает свои действия при построении электрических схем	Тест, результ аты практик ума

131- 138	Библиотеки	8	Использование библиотек в программе. Установка, создание	комнатный термометр, метеостанция,	Использует библиотеки в программе; умеет создавать и устанавливать библиотеки; умеет читать datasheet; использует математические функции в программе.	резульа тат практик
139- 146	LCD-экраны (жидкокристаллические экраны) Управление микроконтроллерами через USB		(ЖК- экран). Характеристики. Подключение символьного дисплея к микроконтроллеру. Основные команды для вывода информации на экран. Бегущая строка. Вывод на экран информации с датчиков из	батареек, вывод сообщений на экран дисплея. Светильник, управляемый по USB; передача закодированных сообщений.	принципы строения ЖК- экранов; приводит примеры применения ЖК-экранов; подключает ЖК-экран в электрическую схему; использует библиотеки, классы, объекты при программировании ЖК- экранов; понимает принципы кодирования информации и использования кириллических шрифтов; объясняет вывод графических объектов на ЖК-экранах.	

147- 162	Двигатели. Типы. Управление двигателями.	16	Движение объектов. Постоянные двигатели. Шаговые двигатели. Серводвигатели. Транзисторы. Основы управления сервоприводом. Драйвер мотора. Скорость вращения мотора, изменение направления вращения Библиотека servo.h	пантограф, миксер.	объясняет принципы строения двигателей различных типов; подключает к электрической схеме двигатели различных типов; пользуется драйвером двигателя для подключения сервомоторов к электрической схеме; использует соответствующие команды для управления моторами при программировании; использует библиотеки управления моторами при программировании; понимает принципы работы транзисторов; объясняет разницу между различными типами транзисторов.	резульа тат практик ума
l						

163- 166	Регистрация данных на SD и Micro-SD карты.	4	Запись данных на SD и Micro-SD карты. Чтение datasheet.		Умеет считывать данные с датчиков и записывать их на SD и Micro-SD	Тест, резульа тат	
					карту, передавать данные по беспроводной связи.	практик ума	
167- 170	Беспроводная связь	4	Подключение модулей беспроводной связи. Чтение datasheet, GSM, Bluetooth и др. Подключение Bluetooth модуля к Arduino. Управление светодиодом, подключенным к Arduino, с компьютера и планшета. Передача данных с Arduino на компьютер и планшет. Специальные приложения на компьютере и смартфоне для удобного интерфейса взаимодействия с Arduino по Bluetooth			Тест, резульа тат практик ума	
Элен	стронный текстиль						
171- 178	Знакомство с платой Arduino Lilypad.	8	Плата Arduino Lilypad и компоненты: светодиоды, акселерометр, датчик	Проекты «Сверкающий браслет»,	Называет основные сферы применения электронного текстиля,	Результ аты практик	
179- 184	Проекты электронного текстиля	6	температуры, зуммер, переключатель, Xbee.	«светящаяся закладка»	сферы применения; умеет шить изделия стальными нитками; умеет программировать на различные действия	ума	
Hpo	ектная работа						

208	Работа над собственным творческим проектом автономного электронного устройства	24	Творческий проект сочетает в себе как электронную начинку и микроконтроллер, так и механику и корпус, изготовленные с помощью 3D принтера.	Называет основные сферы применения микроконтроллеров в обществе. Осуществляет анализ предоставленного устройства. Называет основные составляющие	Проект	
210	Итоговая презентация проектов (конференция).	2	Презентация проектов.	устройства. Использует дополнительные платы расширения и датчики для предоставления устройству	Проект	

Перечень литературы

Для учащихся:

Основная (ЦОР):

- 1. http://wiki.amperka.ru/ теоретический и практический материал, описание практикума
- 2. http://robocraft.ru/page/summary/#PracticalArduino Teoperuческий и практический материал
- 3. http://avr-start.ru/?p=980 Электроника для начинающих. Уроки.

Дополнительная

- 1. http://bildr.ors Инструкции и скетчи для подключения различных компонентов к плате Arduino.
- 2. http://arduino4life.ru практические уроки по Arduino.
- 3. http://arduino-proiect.net/ Видео уроки, библиотеки, проекты, статьи, книги, приложения на Android.
 - 1. https://sites.google.com/site/arduinodoit/home Методические разработки, описание практических и лабораторных работ.
 - 2. http://bildr.org Инструкции и скетчи для подключения различных компонентов к плате Arduino.
 - 3. http://arduino4life.ru практические уроки по Arduino.
 - 4. http://avr-start.ru/?p=980 Электроника для начинающих. Уроки.
 - 5. http://edurobots.ru Занимательная робототехника.
 - 6. http://lesson.iarduino.ru Практические уроки Arduino.
 - 7. http://zelectro.cc Сообщество радиолюбителей (Arduino). Уроки, проекты, статьи и др.
 - 8. http://cxem.net Сайт по радиоэлектроники и микроэлектронике.
 - 9. http://arduino-project.net/ Видео уроки, библиотеки, проекты, статьи, книги, приложения на Android.
 - 10. http://maxkit.ru/Budeo уроки, скетчи, проекты Arduino.
 - 11. http://arduino-diy.com Все для Arduino. Датчики, двигатели, проекты, экраны.
 - 12. http://www.robo-hunter.com Сайт о робототехнике и микроэлектронике.
 - 13. http://boteon.com/blogs/obuchayuschie-lekcii-po-arduino/uroki-po-arduino-oglavlenie.html? Уроки по Arduino.
 - 14. http://arduinokit.blogspot.ru/ Arduino-проекты. Уроки, программирование, управление и подключение.
 - 15. http://kazus.ru/shemes/showpage/0/1192/1.html Электронный портал. Новости, схемы, литература, статьи, форумы по электронике.
 - 16. http://www.radioman-portal.ru/36.php Портал для радиолюбителей. Уроки, проекты Arduino.
 - 17. http://www.ladyada.net/learn/arduino/ уроки, инструкция по Arduino.
 - 18. http://witharduino.blogspot.ru/ Уроки Arduino.
 - 19. http://arduino.ru/Reference Проекты, среда программирования Arduino.
 - 20. http://a-bolshakov.ru/index/0-164 Видеоуроки, проекты, задачи.
 - 21. http://arduino-tv.ru/catalog/tag/arduino Проекты Arduino.
 - 22. http://herozero.do.am/publ/electro/arduino/arduino principialnye skhemy i uroki/4-1-0-32

Принципиальные схемы и уроки Arduino.

23. http://interkot.ru/blog/robototechnika/okonnoe-upravlenie-sistemoy-arduino/ студия инновационных робототехнических решений. Уроки, проекты.